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Abstract
We investigate the survival probability of immobile targets, which get
annihilated by random walkers (RWs) at first encounter. We focus on scale-free
networks (SFNs) and on small world networks (SWNs) as examples of irregular
lattices. On SFNs we consider degree distributions (DDs) with long time tails.
Interestingly, it turns out that the survival probability and the quality of its
description through the average number of distinct sites visited, Sn , depend on
the details of the DD: SFNs which are more ramified have survival probabilities
which are more regular, whereas SFNs with long chain-like segments display
decay laws similar to those of SWNs, where a description only in terms of Sn is
rather poor.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Chemical reactions under diffusion-limited conditions have been extensively studied based on
random walk models. Remarkably, such studies show spectacular deviations from the simple
chemical decay laws, especially in low-dimensional spaces and on disordered lattices [1–8], as
summarized in [9–13].

Of particular relevance in such studies is the A + B → B reaction, especially when one of
the species is immobile. In the case that the As are immobile one has the target reaction [14] and
in the case that the Bs are immobile the trapping reaction [4, 9, 10, 12, 15]. Mixed situations,
in which both species move, have also been investigated [8–10]. The target problem can now
be solved exactly on regular lattices of arbitrary dimensions [6, 14, 16, 17], and the solution
can be extended to regular ultrametric spaces (UMSs) and to Cayley trees [10, 11, 18]. This
situation contrasts strongly with the findings for the trapping problem where, apart from the
one-dimensional case [9, 12], no exact solution in closed analytical form is known.

Recently, much interest arose in the study of complex graphs such as small world
networks (SWNs) [19–29] and scale-free networks (SFNs) [15, 30–33], which are used to
describe complex, disordered systems. SFNs are characterized by lacking a characteristic
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node connectivity and by the presence of ‘hubs’, vertices with many bonds attached to them.
Hence such hubs are connected to a large number of other vertices. In [34] we analysed the
target problem on SWNs [19–29]. Interestingly, the target decay on SWNs turned out to be
anomalous, in that at longer times the closed-form expressions valid for regular lattices do not
hold anymore [34]. Even more interesting situations are found for target reactions on SFNs, as
we proceed to show. In the following we determine numerically the target decay on SFNs and
confront it to the results for other network types and for the trapping reaction [15].

2. Target problem

Let us recall the basic features of the target problem. As stated, it belongs to the A + B → B
reactions, and in it the B molecules move independently of each other, while the A molecules
are held fixed [14, 16–19, 35, 36]. Now, it turns out that for several regular lattice types the
decay law �n of the A targets as a function of the number n of steps can be determined
analytically. Thus, if the Bs are initially randomly placed over the lattice, with average
occupation q , their local spatial distribution is Poissonian, so that at each site the probability
d j of finding exactly j walkers is d j = q j exp(−q)/j !. Then for translationally symmetric
lattices the decay law of the targets is [6, 16]

˜�n ≡ exp[−q(Sn − 1)]. (1)

In (1), Sn is the mean number of distinct sites visited by a walker in n steps. For regular
lattices, in one dimension one has Sn ∼ √

n, and in dimensions higher than two, Sn ∼ n. In
the latter case Sn grows linearly with n, which implies that in the long run the probability for
the random walker to visit a new site is constant and independent of n. As was shown in [19],
a relation similar to (1) also holds approximately for target reactions on SWNs, for very small
q and small to moderately large n. On the other hand, for larger values of q and longer times
there are large discrepancies between the ˜�n of (1) and the target decay �n on SWNs [34].

The proof of the fact that (1) is exact on several types of regular lattice can be readily seen.
Here we follow the approach given in [14, 16, 19, 34]. One starts from the probability that a
particular immobile target (which is annihilated if any walker visits its site k) survives the first
n time steps. Denoting by Hki (n) the probability that a walker which starts at i reaches the site
k during the first n steps, the probability ζk(n) that the target at site k survives the first n time
steps when initially there are ji walkers at site i is [6, 16]

ζk(n) =
∏

i,i �=k

[1 − Hki(n)] ji . (2)

Taking now that the ji follow the distribution d j leads for each term in the product of (2) to
∞

∑

j=0

[1 − Hki(n)] j q j e−q/j ! = e−1 exp[q(1 − Hki (n))] = exp[−q Hki(n)] (3)

and ζk(n) averaged over all initial walker distributions reads

φk(n) = exp[−q�k(n)], (4)

where the quantity

�k(n) ≡
∑

i,i �=k

Hki(n) (5)

was introduced. In (4), as in [6, 16], the average over all initial walker distributions and their
motion can be performed exactly. However, φk(n) depends on the particular lattice type and on
the site k of the target. For a very regular network, on which both the site connectivities and
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also the return probabilities to each site have site-independent values, the quantities Hki (n) are
symmetric [14, 19], Hki(n) = Hik(n). From this it follows that [14, 19]

�k(n) =
∑

i,i �=k

Hki(n) =
∑

i,i �=k

Hik(n) = Sn − 1, (6)

where Sn , the mean number of distinct sites visited by a walker during the first n steps, is also
independent of k. Inserting (6) into (4) (and noticing that all sites k are then equivalent) leads
to (1), as claimed above. Now, on regular crystal lattices, on infinite Cayley trees, and also
on regular ultrametric spaces, all sites are equivalent [16, 37–40]. Hence (1) holds for them
exactly [6, 14, 16, 17]. On the other hand, the situation is different for SWNs and for SFNs.

3. Scale-free networks

Now, the degree k of a site is the number of bonds emanating from it (or, equivalently, the
number of its nearest neighbours). For SFNs one usually assumes for the distribution of degrees
(DD) a power-law:

p̄k ∼ k−γ , (7)

where p̄k is the probability that the degree is k and γ is a parameter that measures how densely
connected the network is.

Now, there are many ways in which such a DD (which should obey (7) for large k) may be
postulated. One may assume (7) to hold strictly for all k = 1, 2, 3, . . .. Then

pk = k−γ

∑∞
j=1 j−γ

. (8)

If on the other hand (7) holds starting from, say, only k = 2 (and also assuming,
exemplarily, that p1 ≡ 0) one obtains, instead of (8),

pk = k−γ

∑∞
j=2 j−γ

. (9)

This DD also obeys (7). As we will see in the following, however, the properties of SFNs
obtained from (8) and from (9) differ.

Let us now turn to the construction of a particular realization of an SFN. We start with
vertex 1 and pick its degree randomly according to one of our specified DDs, say (8) or (9).
Then we create new (open) vertices at the end of all the bonds. Picking one of such open
vertices randomly, we continue the process until no new bonds can be added.

In figure 1 we display an SFN with N = 36 vertices obtained from (8). The numbering
is according to the chronological order in which the vertices are created. We start from the
position 1. From the DD given by (8) we pick the functionality of this vertex (which in
figure 1 turns out to be one) randomly and we create one new open vertex, labelled 2. After this
step we pick at random one of the open vertices present (now we have only one open vertex,
namely vertex 2). Its functionality is then obtained from the distribution pk , given by (8). If its
functionality turns out to be one, then to this vertex no new vertex will be added and the vertex
turns into a closed one. Otherwise, (as is the case here, since the functionality of vertex 2 is
three) new open vertices are created. The process is iterated by picking another open vertex
randomly.

In figure 2, for comparison, we display an SFN with N = 35 vertices, obtained from the
DD (9). One can note that in figure 1 there are only two open vertices; on the other hand,
by construction, in figure 2 all peripheral vertices are open. Also figure 1 is quite branched,
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Figure 1. An example of a scale-free network with N = 36 and γ = 2.5. The construction follows
the degree distribution (8); the white circles are the open vertices.
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Figure 2. An example of a scale-free network with N = 35 and γ = 2.5. The construction follows
the degree distribution (9); the white circles are the open vertices.

reminiscent of an irregular Cayley tree. Figure 2 has somewhat longer, chain-like segments
between the branching points than figure 1.

Due to the limited time and memory resources available, we restrict the size of every SFN
we use, i.e. the total number of its vertices, to a preset value Nmax. Now, under the DD (8) it
often happens that the SFN construction stops at N vertices, with N < Nmax. This is due to
the fact that with (8) many vertices have degree one. In such a case we discard the SFN with
N < Nmax and start the construction anew. On the other hand, under (9) every vertex has at
least two neighbours, so that the construction never stops by itself. Then, when we reach Nmax

we stop the growth by assigning to all remaining open vertices the degree one. We remark that
for Nmax large the construction of SFNs using (8) is very time consuming, because many SFNs
have to be discarded before we obtain a structure with N = Nmax.

In figure 3 we plot the degree distribution for 50 structures obtained from (8) and (9) for
γ = 2.5 and N = 100 000, leaving out for (9) the contribution of the peripheral beads of
degree one. Figure 3 shows that the expected scaling (7) is well obeyed.
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Figure 3. The degree distribution found by constructing 50 structures, containing each 100 000
vertices. The structures are obtained for γ = 2.5, using (8) (circles) or (9) (triangles). In the
case (9) only the interior beads are accounted for; see the text for details. The slope 2.5 is indicated
by a straight line.

4. Simulations and results

We evaluate the target decay �n on SFNs through direct simulations, which we then compare
to (1), calculated based on Sn . The simulations proceed in a direct way, by randomly placing
walkers on the SFNs according to the parameter q . In the beginning all sites that are not
occupied by walkers are taken to be targets. Each random walker moves at every time step from
the site i which it occupies to one of its neighbouring sites j . We assume that all possibilities
of leaving a given site are equally probable. A reaction act occurs at the first encounter of
a target by any of the walkers. The survival probability �n of the targets is given by simply
counting the number of remaining targets after n steps. For the simulations we used the random
number generator RANDOM NUMBER, from FORTRAN. We took SFNs of size N = 105

and averaged over 50 different realizations of the process; for each realization, a new SFN
was created, the walkers were randomly placed on it, unoccupied sites were assigned targets,
and the walkers were then allowed to move. The decays obtained by this method are given
in figure 4 for the DD (8) and in figure 5 for the DD (9). The results of the simulations are
given by symbols, and we have indicated the standard deviations (vertical) obtained from the
50 realizations by error bars. In both figures γ is taken to be γ = 2.5, while for the average
occupation we consider five cases, namely q = 0.01, q = 0.02, q = 0.05, q = 0.1 and
q = 0.2.

For comparison we use ˜�n given by (1). This expression, which for regular lattices is
exact, will turn out to be only an approximation here. In the trapping process it is called the
Rosenstock approximation [41, 42]. ˜�n requires the knowledge of Sn , which we determine
by averaging over 50 different realizations; over each of them 1000 different random walks are
performed. Again we take the size of the SFNs to be N = 105 and randomly choose the starting
position of the walker. In figure 4 the solid lines represent ˜�n. By comparing �n to ˜�n we can
see that they agree rather well, especially for large values of q . This result is in good agreement
with the study of the trapping problem over SFNs by Gallos [15], where it was shown that the
Rosenstock approximation holds well. Gallos also used the DD (8) to create a set of vertices,
which he then randomly combined into clusters, and chose as SFN the largest cluster from each
realization [15]. It turns out that both for his construction and in our case here, with the DD (8),
�n provides a good description of the decay of the targets.

5



J. Phys.: Condens. Matter 19 (2007) 065122 M Galiceanu and A Blumen

n

q=0.01

  0.02
  0.05
  0.1
  0.2

Φ

0 1000 2000 3000

1

10–1

10–2

10–3

10–4

Figure 4. Target survival probabilities over SFNs (as a function of the number of steps n)
determined by direct simulations (�n , symbols) and by ˜�n , equation (1), solid lines. Here the
degree distribution is given by (8) and the parameters are N = 105 and γ = 2.5. The average
occupation is q = 0.01, 0.02, 0.05, 0.1 and 0.2 from above.
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Figure 5. Same as in figure 4 for the degree distribution given by (9).

In figure 5, we plot the target decay �n on SFNs using the DD (9). The procedure is
similar to that leading to figure 4. To facilitate the comparison with the DD (8) we choose the
same values for N , γ and q . In figure 5 the data for �n are obtained from direct simulations
for 50 different SFNs, while for the calculation of ˜�n we took the same SFNs and performed
1000 random walks over each of them. We find that now the agreement between �n and ˜�n is
considerably poorer. We attribute this fact mainly to the difference in the topologies obtained
from the DD (8) and the DD (9). For example, under the DD (9) for internal vertices the degree
two is dominant (see figure 3 and the sketch in figure 2), as is the case for a ring, which is the
starting point of the SWNs to which we now turn.

For the target decay on SWNs we follow the steps of [19, 34, 43, 44]. The construction
of the SWNs starts from a ring consisting of N vertices, where each vertex is connected to
its two nearest neighbours and has thus degree two. Then to each vertex an additional link
is added with probability p; this link ends with equal probability at any of the N sites of the
ring (possibly the one it started from). Increasing p decreases the average (minimal) distance
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Figure 6. Target survival probabilities for SWNs (as a function of the number of steps n) determined
by direct simulations (�n , symbols) and by ˜�n , equation (1), solid lines. The parameters are
N = 105, p = 0.04, 0.08 and 0.2 (from above) and the average occupation is q = 0.05.

between vertices on the ring. In figure 6 we plot the numerically determined �n obtained
from simulations over 50 SWNs of size N = 105, obtained by choosing p = 0.04, 0.08 and
0.2, while setting the average occupation equal to q = 0.05. We averaged over 50 different
realizations of the target process, where for each realization a new SWN structure was created.
The target decay obtained from simulations, �n , is given by symbols, while we depict the decay
of ˜�n by solid lines. For ˜�n we evaluated the corresponding Sn by taking the same SWNs and
performing 1000 random walks over each structure. Our findings are in very good agreement
with the previously published data (figure 1 of [34]), obtained using more extensive statistics.
Noticeable is that under SWN conditions the departure of ˜�n from �n is considerable; this
stresses the point that with increasing disorder one needs to go to higher cumulants of the
decay distribution in order to represent �n properly [34, 41].

5. Conclusions

In this work we focused on the target problem on scale-free networks (SFNs) and compared the
obtained decay laws with the behaviour found for regular lattices and for SWNs. As in the case
of SWNs and distinct from the situation for regular lattices, here we were not able to find the
exact solution to the problem. The difficulty rests in the disorder inherent in the construction
of SFNs, a situation akin to SWNs; such a disorder seems to preclude an exact solution along
the lines of argument used for regular lattices. Distinct from the situation on SWNs, however,
we sometimes find for SFNs decay forms which can be well understood in terms of Sn , the
mean number of distinct sites visited by a random walk in n steps; this means that on particular
SFNs the target problem is much closer to a mean-field behaviour than on SWNs. We hasten to
note that a similar finding was reported in [15] with regards to the trapping problem. As is well
known, the trapping problem is dominated at long times by rare events, which are notoriously
difficult to handle. Here, for SFNs the target decay seems to follow the general pattern found
for the decay due to trapping.

Evidently, the big problem is to determine (if possible, exact) solutions for chemical
reaction schemes in the presence of disorder, as exemplified here by the underlying, irregular
SWNs and SFNs.
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